Strong Convergence of Monotone Hybrid Algorithm for Hemi-Relatively Nonexpansive Mappings

نویسندگان

  • Yongfu Su
  • Dongxing Wang
  • Meijuan Shang
چکیده

The purpose of this article is to prove strong convergence theorems for fixed points of closed hemirelatively nonexpansive mappings. In order to get these convergence theorems, the monotone hybrid iteration method is presented and is used to approximate those fixed points. Note that the hybrid iteration method presented by S. Matsushita and W. Takahashi can be used for relatively nonexpansive mapping, but it cannot be used for hemi-relatively nonexpansive mapping. The results of this paper modify and improve the results of S. Matsushita and W. Takahashi 2005 , and some others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Theorems for Two Families of Weak Relatively Nonexpansive Mappings and a Family of Equilibrium Problems

The purpose of this paper is to prove strong convergence theorems for common fixed points of two families of weak relatively nonexpansive mappings and a family of equilibrium problems by a new monotone hybrid method in Banach spaces. Because the hybrid method presented in this paper is monotone, so that the method of the proof is different from the original one. We shall give an example which i...

متن کامل

Hybrid Algorithm for Common Fixed Points of Uniformly Closed Countable Families of Hemirelatively Nonexpansive Mappings and Applications

The authors have obtained the following results: 1 the definition of uniformly closed countable family of nonlinear mappings, 2 strong convergence theorem by the monotone hybrid algorithm for two countable families of hemirelatively nonexpansive mappings in a Banach space with new method of proof, 3 two examples of uniformly closed countable families of nonlinear mappings and applications, 4 an...

متن کامل

New hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces

In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...

متن کامل

Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings

In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...

متن کامل

Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008